.

PR S

Form approver!
REPORT DOCUMENTATION PAGE e e ovos 0188
:w‘ . ".T:‘a” v gy : v - '” - ":'g-::'-" L '-:.-”-c " e - .o ’v.:u'-r':- - ; - ':.\ ": 'wlv—.‘-vn :\1".“‘:;0‘."4’) g ;‘;::- .-:;‘.". :'_E-'E.‘
AN, L L AN [t 9 » 2 S sn AR 5 ' - S S) '
?;:d.:- ;,’:1',,:-:‘.-“.,” - :”6, IV: 22‘:.:'&1")"-4 lvz ?:‘. 2 m.:-' LR .:-. - w: Mot m ta gt APre e IIDADIBEY i TS A I 2N
T, AGENCY USE ONLY (icavs Dletik) | 2. KEPORY DaTE 3. R(POKT TYPE AND DATES COVERD 1 July 1995~
9 October 1995 Quarterly Technical 30 Sept 1995
8. TITLE AND SUBTITLE S FUNDING NUMBERS
KQML - Accessible, High-Performance, Massive - Grant Number

Knowledge Bases, Quarterly Technical Report

‘Lﬁmﬂs)

James Hendler
Joel Saltz

aﬁ R RMIN GANIZATION
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8 :E:’O?U "lug.i’: »

N00014-94-1-0907

University of Maryland
Department of Computer Science
College Park, Maryland 20742-3255

RING : MONITORING
9. SPONSORING MONITORING AGFNCY NAME(S) AND ADDRESSIES) _ 10 2'2‘2?.‘:9 N ORT MuBER

Office of Naval Research

Ballston Tower One

800 North Quincy Street

Arlington, Virginia 22217-5660
11. SUPPLEMENTARY NOTES

TRIBUTION COOE
12¢. DISTRIBLTION | AVAILABIUTY STATEMENT 12b DISTRIBY <

—oxrre- o lwwied

13. AB5TRACT (Masmum 200 wireds)

Research this quarter focused on developing generic HPC components motivated
by the high performance knowledge base work. The attached extended abstract,
accepted for presentation at the SIPAR Workshop on Parallel and Distributed

Systems (Biel-Bienne, Switzerland, October, 1995) describes this work.

19960424 087

14, SUKJECT TERMS

15. NUMgER OFf PAGES

Knowledge based systems, High performance computing, 16 pRicE COOL
interoperability —
RITY CLASSIFICATION] 2. LIMITATION OF &
UR! TICATION T (B SECURITY CLASSIFICATION 18 SECUY
v SO[FC::X;IOYRP Assie OF Trit§ PAGE OF ABSTRACT

Yrgeml o0 l’n-m ‘9K "u 2 8y
NS\ 756007 -2R:2- 590} .‘”,,..\ . by @t

Quarterly Report: N00014-94-0907

PI: James Hendler Co-PI: Joel Saltz

University of Maryland, College Park

Contract Title: KQML-Accessible, High-Performance, Massive Knowledge
Bases

Contract Number: N-00014-94-0907

Principal Investigators: James Hendler, Univ. of Maryland
Joel Saltz, Univ. of Maryland

ARPA Order: B399

1 Research Results

Research this quarter focused on developing generic HPC components motivated by the
high performance knowledge base work. The attached extended abstract, accepted for
presentation at the SIPAR Workshop on Parallel and Distributed Systems (Biel-Bienne,
Switzerland, Oct. 1995) describes this work.

2 Grant Related Activities

2.1 Awards And Honors

Professor Hendler has been chosen as a member of the prestigious Defense Science Study
Group run by the Institute for Defense Analysis. Dr. Hendler will be a member of the
1996-1997 Study Group.

2.2 Publications This Quarter

Gagan Agrawal and Joel Saltz, "Interprocedural Data Flow Based Optimiza-
tions for Compilation of Irregular Problems”, Languages and Compilers for
Parallel Computing, Aug 1995.

K. Stoffel, D. Sharma, J. Hendler, J. Saltz, Integrating task-parallel computa-
tions into data-parallel applications Proceedings of the SIPAR Workshop on
Parallel and Distributed Systems, Biel-Bienne, Switzerland, October, 1995.

Manuel Ujaldon, Shamik D. Sharma, Joel Saltz, and Emilio Zapata, “Runtime
Techniques for Parallelizing Sparse Matrix Applications,” Proceedings of the
1995 Workshop on Irregular Problems, September, 1995.

J. Hendler, Artificial Intelligence: yesterday, today and tomorrow, Currents in
Modern Thought, The World & I, July, 1995.

K. Erol, J. Hendler and D. Nau, ”A Critical Look at Critics in HTN Planning”,
Proc. International Joint Conference on Artificial Intelligence (IJCAI-95),
Montreal, Aug, 1995.

V. Manikonda, J. Hendler, and P.S. Krishnaprasad ”Formalizing Behavior-Based
Planning for Nonholonomic Robots,” Proc. International Joint Conference on
Artificial Intelligence (IJCAI-95), Montreal, Aug, 1995.

V. Manikonda, P. Krishnaprasad, and J. Hendler, ” A Motion Description Lan-
guage and a Hybrid Architecture for Motion Planning with Nonholonomic
Robots,” Proc. International Conference on Robotics and Automation,
Nagoya, Japan, 1995.

Integrating task-parallel computations into
data-parallel applications

Kilian Stoffel Shamik D. Sharma James Hendler
Joel Saltz

Department of Computer Science

University of Maryland, College Park, MD 20742
{stoffel, shamik }@cs.umd.edu

Abstract

We ezamine the parallelization of data-parallel applications which have a sig-
nificant task-parallel component. We describe some applications which ezhibit
this feature, and present the runtime techniques we used to efficiently parallelize
the task-parallel component of such computations while retaining a data-parallel
programming framework.

1 Introduction

Recently there has been an increased effort to integrate task and data paral-
lelism, which are often seen as mutually exclusive approaches to parallel pro-
gramming. This effort has been fueled by the need to parallelize important
applications that require exploitation of both forms of parallelism.

Broadly, two types of mixed task/data-parallel applications can be readily
distinguished. The first class includes those problems where separate data-
parallel computations are coupled with a task-graph specifying the interac-
tions. Problems of this sort include multi-disciplinary simulations and image-
processing pipelines. Individual tasks are coarse-grained, and the data-parallelism
is contained within each task of the task-parallel computation. In the second
class of problems, a data-parallel program invokes a task-parallel subcompu-
tation. This may be required if an application that is largely data-parallel
includes a phase that requires the exploitation of task-parallelism. For exam-
ple, in the ETMSP [2] code for transient stability analysis of electrical power
grids, the loops that perform the triangular solution of the sparse network ma-
trices have loop-carried dependencies. These loops constitute less that 10% of
the total sequential execution time, but when the rest of the code is paral-
lelized this becomes the bottleneck. The task-parallelism in these loops must be

exploited to achieve scalability. Similar problems arise in other sparse-matrix
codes, knowledge-base search-engines as well as certain video-manipulation al-
gorithms.

A principal reason why such applications have not been successfully par-
allelized despite the presence of substantial parallelism is the lack of system
support for low latency communication and synchronization. However, with
decreasing communication latencies we show that it is now possible to exploit
such parallelism by applying runtime techniques that increase the granularity
and reduce the synchronization overheads. We present two applications that
need such support and describe how they were successfully parallelized.

2 Applications
2.1 Knowledge Retrieval

In data mining applications a knowledge repository is searched for information
with the aim of obtaining as much information as possible. Examples of data-
mining applications are WWW worms and search-engines for the inheritance
networks of knowledge bases. In such knowledge-bases, the networks are repre-
sented by DAGs, with the links representing paths used to inherit information.
The search on such a inheritance network can be very computationally inten-
sive and 1s parallelizable. Such search engines have been implemented for Al
knowledge bases [5, 3] and the parallelization techniques developed for these
problems can be applied for WWW searches as well. In this paper, we have
used the search engine of the PARKA knowledge-base as a sample application.
The knowledge-base is represented as a DAG with hierarchical links represent-
ing inheritance relationships (such as IS-A). A sample query may be “Give all
animals that have horns”. This search traverses the DAG and keeps track of all
nodes that satisfy the constraints.

2.2 Sparse Matrix Applications

Sparse matrices are used in numerous scientific applications. Many sparse-
matrix operations are data-parallel (e.g. sparse-matrix vector products, matrix-
matrix multiplication) while others are more amenable to fine-grained task-
parallelism (e.g Gaussian elimination of triangular matrix). Since the loops
which are most computationally intensive are usually data-parallel, such codes
are usually written in a data-parallel fashion (say in languages in HPF). In such
cases the loops which are not data-parallel must be executed sequentially. This
has two negative effects. Firstly, the sequential loop soon becomes the bottleneck
if parallelism is increased. Secondly, all data required to execute the sequential
loop must be brought into a single processor - this severely restricts the problem
size that can be solved. This necessitates the support for task-parallelism. As

an example of such applications, we have used a sparse triangular solve kernel,
similar to the one used in [1].

3 Programming Model

Our programming model attempts to have as much of a data-parallel flavor as
possible. This places restrictions on the types of task-parallelism we allow. We
list these restrictions below.

1. The task-graphs and static and acyclic.

2. Each data item is updated by a unique task and all data-items updated
by a given task are on the same processor. This allows an owner-computes
strategy.

3. The same task-graph is repetitively used for different data-sets. This
allows runtime preprocessing optimizations.

These restrictions are not severe and the two motivating applications we
consider satisfy these restrictions.

The nodes of the task-graph are distributed across processors based on a
user-specified distribution and the computation is distributed using the owner-
computes rule. Since the task-graph computation is iterative, certain optimiza-
tions can be performed once in a preprocessing step and reused. One such
optimization is to perform a topological sort of the DAG, thus dividing it into
levels. As shown in Figure 1, the synchronization requirements can now be con-
fined to the levels thus increasing the computation granularity. This method has
been suggested in [4], and was used to parallelize sparse matrix codes with loop
carried dependencies. However global synchronization does not work very well
because the synchronization constraints affect the load balancing. All proces-
sors have to wait for the slowest processor at each level. The total computation
time is Ef\; max (Comp (level;)).

The alternative approach, considered in [1] is to use better distribution
mechanisms to increase locality and then use low-latency active messages to
communicate the data that does need to go off-processor. The arrival of data
automatically triggers computation, thus the synchronization is implicit. The
synchronization requirements of this method are very relaxed and thus the load-

balance is better. The total computation time is max (Zf‘;l Comp (161)61,')).

While the computation time is better than the level-synchronized scheme, the
communication/synchronization time may be worse since more messages are
sent, even though the amount of data sent is the same. [1] found that high
efficiencies could be achieved on the CM-5 using its very low overhead commu-
nication support. A drawback is that a dataflow programming model must be
used.

DO K = 1, num_levels
MPI scatter(level(k-1))
MPI_gather(level(k))
COMPUTE(level(k))

END DO

Figure 1: Collective synchronization

DO K = 1, num_levels
id = FZY_scatter(level(k-1))
WHILE (FZY_recv(id, data)
== LEVEL_NOT.DONE))
COMPUTE(level(k))
END DO

Figure 2: Fuzzy synchronization

Our approach is to use the level-based data-parallel model but relax the
synchronization constraints by using split-phase synchronization mechanisms.
This allows processors to continue processing incoming data from the next level
while waiting for the slowest processor from the previous level. Since each
processor does not progresses to the next level until it has processed all nodes
at the current level, the skew is limited to a maximum of one level. This is
most useful when a processor can have a high load at one level and a low load
at the next level. In such a case, that processor can catch up without slowing
the others down.

Figure 3 shows how a DAG could be parallelized using such a fuzzy barrier.
Each processor sends out all the outgoing data at the end of each level, but pro-
cesses each incoming data-chunk as soon it arrives. The condition NOT_DONE
remains true until all the incoming messages from a level have arrived, or when
a termination condition has been detected. Thus even if processor A is on level
X, processor B can begin to process data on level X+1 (until it eventually waits
to receive A’s message). Though, we do not discuss it here, the termination de-
tection check can be incorporated to implement branch-and-bound algorithms.
The computation time is thus better than that of the level-based scheme with
no extra communication overhead.

4 Results

The results presented here are for the Knowledge Base application. [The num-
bers for the Sparse Matriz application are similar and will be included in the
extended version.]

Figures 3 and 4 shows the results of using fuzzy synchronization and the

Barrier vs. Fuzzy Synchronization on SP-2

18 1)] T ¥ I L) o
Barrier s+~
Fuzzy-=+--.
14 - '._Ideal -8-- |
12} .
10 F
s
b 8t
&
v
6 -
4
2
O 1 A 1 1 1 1 L
] 2 4 6 10 12 14 16

8
#nodes

Figure 3: Barrier vs. Fuzzy Synchronization

level-based runtime techniques on the inheritance network code. These experi-
ments used using an inheritance network with 500, 000 classes and instances (i.e
the DAG has 500K nodes). As can be seen from 3, fuzzy synchronization pro-
vides significant benefits over using collective synchronization. Figure 4 shows
that high efficiencies can be obtained over a wide range of platforms using these
techniques. The efficiencies are around 70%.

Acknowledgements

This research was supported in part by grants from ONR (N00014-J-91-1451),
AFOSR (F49620-93-1-0065), the ARPA/Rome Laboratory Planning Initiative
(F30602-93-C-0039), the ARPA I3 Initiative (N00014-94-10907) and ARPA con-
tract DAST-95-C0037. Dr. Hendler is also affiliated with the UM Institute for
Systems Research (NSF Grant NSF EEC 94-02384).

References
[1] Fredric T. Chong, Shamik D. Sharma, Eric Brewer, and Joel Saltz. Multi-

8 1 1 T
Sp2 -
$p2/mpi -
Paragon -8---
4k cm5 -x-— J
t3d/pvm -a--
2 -

)
£
05
0.25
0.125
0.0625 L L L
1 2 8 16

4
#nodes

Figure 4: Performance of parallelized Inheritance Network code

processor runtime support for fine-grained, irregular DAGs. Technical Re-
port CS-TR-3266, University of Maryland, Mar 1994. To appear in Parallel

Processing Letters.

{2] Analysis of performance accelerator running ETMSP. Technical Report TR-
102856, Performance Processors, Inc., Palo Alto, California 94301, October
1993. Research Project 8010-31.

[3] Douglas B. Lenat and R.V. Guha. Building Large Knowledge-Based Systems.
Addision-Wesley, 1991.

[4] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-time paralleliza-
tion and scheduling of loops. IEEE Transaclions on Computers, pages 603—
611, 1991.

[5] Kilian Stoffel, William A. Anderson, and James Hendler. Parka: Support
for extremely large knowledge bases. In Proceedings of KRUSE Symposium:
Knowledge Retrieval, Use and Storage for Efficiency, 1995.

